

Decoding of Block Turbo Codes

Mathematical Methods for Cryptography Dedicated to Celebrate Prof. Tor Helleseth's 70th Birthday

September 4-8, 2017

Kyeongcheol Yang

Pohang University of Science and Technology

Outline

- Product codes
- Block turbo codes (BTCs)
- Soft-input soft-output (SISO) decoding
- Decoding of BTCs Based on the Chase algorithm
- Proposed decoding algorithms for BTCs
- Conclusions

- Product codes were proposed by Elias in 1954 [1].
- Advantages
	- \checkmark Efficient construction for long codes

 $[n_1, k_1, d_1] \otimes [n_2, k_2, d_2] \rightarrow [n_1n_2, k_1k_2, d_1d_2]$

 \times Low-complexity decoding

 $O(n^2) \rightarrow O(n^{3/2})$

assuming that codes of length l have decoding complexity $O(l^2)$

 \checkmark Robust to burst errors

^[1] P. Elias, "Error-free coding," IRE Trans. on Information Theory, vol. IT-4. pp. 29-37, Sept. 1954.

Product Codes: Construction and Encoding

• Encoding

- \checkmark Column encoding by an $\lceil n_1, k_1, d_1 \rceil$ code. $\lfloor n_{_1},k_{_1},d_{_1}\rfloor$
- $\left\lceil n_2, k_2, d^{}_2 \right\rceil$ \checkmark Row encoding by an $\left[n_2, k_2, d_2\right]$ code.
- The constructed code is an $\left[n_1n_2, k_1k_2, d_1d_2\right]$ linear code.

Product Codes: Decoding

• Decoding

- \checkmark Column decoding by an $[n_1, k_1, d_1]$ code.
- \checkmark Row decoding by an $\begin{bmatrix} n_2, k_2, d_2 \end{bmatrix}$ code.

Hard-decision decoding is conventionally performed only once

• Component codes

…

…

- \checkmark Typically, high rate codes are employed.
- \checkmark Hamming codes or extended Hamming codes
- \checkmark BCH codes or extended BCH codes
- Usually, these codes are algebraically decoded.
	- \checkmark Berlekamp-Massey algorithm
	- \checkmark Euclidean decoding algorithm

 Under algebraic decoding (hard-decision decoding), iterative decoding do not improve the performance of a product code.

-
- Assume that binary phase-shift keying (BPSK) is employed over the additive white Gaussian noise (AWGN) channel.
- The ouput of a matched filter at the receiver is $r = \pm 1 + z$ $z \sim N(0, \sigma^2)$
- Binary-input AWGN (BI-AWGN) channel

● Hard-decision:

Binary symmetric channel (BSC)

• Soft-decision

LLR (log-likelihood ratio) =
$$
\frac{p(r|+1)}{p(r|-1)} = \frac{2}{\sigma^2} r
$$

 The asymptotic coding gain of soft-decision decoding over hard-decision decoding is 3 dB.

- Concatenated codes
	- \checkmark Proposed by Forney in 1965 [2]
	- \checkmark A generalization of product codes by an interleaver

- As an inner code, soft-decision decodable codes are strongly recommended for better performance.
- Best combination for the AWGN Channel before the turbo era: Reed-Solomon + Convolutional codes (Viterbi algorithm)

^[2] G. D. Forney, Concatenated Codes, Ph.D. Dissertation, MIT 1965.

Concatenated Codes: Decoding

- Inner and outer codes are decoded only once.
- Iterative decoding (turbo principle)
	- \checkmark Inner and outer codes can be iteratively decoded, if they are supported by soft-input soft-output decoders.
	- \checkmark Then the overall performance can be significantly decoded.

• Turbo codes

- \checkmark Invented by Berrou, Glavieux, and Thitmajshima in 1993 [3]
- \checkmark Parallel concatenated codes
- \checkmark Convolutional codes as component codes
- \checkmark Soft-input soft-output (SISO) decoder for convolutional codes
- \times Iterative decoding
- \checkmark capacity-approaching performance
- Block turbo codes (BTCs)
	- \checkmark Introduced by Pyndiah [4], [5]
	- \checkmark Product codes: serially concatenated codes
	- \checkmark Block codes as component codes
	- \checkmark Large minimum Hamming distance
	- \checkmark SISO decoder for block codes: a bottleneck for decoding of BTCs.
	- \times Iterative decoding

^[3] C. Berrou, A. Glavieux, and P. Thitmajshima, "Near Shannon limit error-correcting coding and decoding: Turbo-codes (1)," ICC 1993.

^[4] R. Pyndiah, A. Glavieux, A. Picart, and S. Jacq, "Near optimum decoding of product codes,"

in Proc. IEEE GLOBECOM 1994, vol. 1, pp. 339-343, Nov.-Dec. 1994.

^[5] R. Pyndiah, "Near-optimum decoding of product codes: block turbo codes," IEEE TCOM, vol. 46, no. 8, Aug. 1998.

• Soft-input soft-output (SISO) decoding

- For convolutional codes, the BCJR Algorithm supports SISO decoding.
- For graph-based codes, SISO decoding can be implemented by message-passing algorithms such as the sum-product algorithms for low-density parity check (LDPC) codes.
- In this talk, we consider block codes which are algebraically constructed.

• SISO decoding for block codes can be implemented in two stages:

- \checkmark Soft-decision decoding
- \checkmark Extraction of the extrinsic information

• Soft-decision decoding for block codes

- \checkmark Maximum-likelihood (ML) decoding
- \checkmark Trellis-based decoding
- \checkmark List-based decoding

Maximum-Likelihood (ML) Decoding

$$
\begin{array}{|l|l|}\n\hline\n\mathbf{D} = \mathbf{C}^i \quad \text{if} \quad \left\| \mathbf{R} - \varphi\left(\mathbf{C}^i \right) \right\|^2 \le \left\| \mathbf{R} - \varphi\left(\mathbf{C}^j \right) \right\|^2, \quad \forall j \in [1, 2^k], j \neq i\n\end{array}
$$
\n
$$
\begin{array}{|l|l|}\n\hline\n-\mathbf{k}: \text{ information length of a row or a column code} \quad \text{long codes!} \\
-\mathbf{R} = (r_1, r_2, \dots, r_n): \text{ received signal vector} \\
-\mathbf{D} = (d_1, d_2, \dots, d_n) \in C: \text{ optimum decision codeword} \\
-\mathbf{C}^i = (c_1^i, c_2^i, \dots, c_n^i) \in C: \text{ ith codeword of a code } C \\
-\varphi(\cdot): \text{ mapping function from } \{0, 1\} \text{ to } \{-1, +1\}.\n\end{array}
$$

- ML decoding is optimal in the sense that the block error rate is minimized.
- However, ML decoding is not feasible for high-rate codes.

Trellis-Based Decoding for Block Codes

• Trellis representation of a block code

- The Viterbi algorithm or BCJR algorithm is employed.
- Disadvantages
	- \checkmark The corresponding trellis is not time-invariant, but time-varying.
	- \checkmark The complexity of trellis representation is very high.

Number of states $\approx \min(2^k, 2^{n-k}) \rightarrow \infty$

\checkmark Trellis-based decoding has high complexity.

^[6] J. K. Wolf, "Efficient maximum likelihood decoding of linear block codes using a trellis," IEEE Trans. Inform. Theory, vol. 24, no. 1, Jan. 1978.

List-Based Decoding: Chase Decoding

• Chase Decoding [7]

- \checkmark Choose some least reliable positions of the received vector
- \checkmark Generate test sequences from the hard-decision vector of the received vector
- \checkmark Decode them by hard-decision decoding
- \checkmark Make a list of candidate codewords
- \checkmark An decision codeword is determined from the list.

^[7] D. Chase, "A class of algorithms for decoding block codes with channel measurement information," IEEE Trans. Inform. Theory, vol. IT-18, no. 1, Aug. 1972.

List-Based Decoding: OSD

• Ordered Statistics Decoding (OSD)

- \checkmark Choose some largest reliable positions of the received vector
- \checkmark Generate test information vectors
- \checkmark Encode them into codewords
- \checkmark Make a list of candidate codewords
- \checkmark An decision codeword is determined from the list.

^[8] M. P. C. Fossorier and S. Lin, "Soft-decision decoding of linear block codes based on ordered statistics," IEEE Trans. Inform. Theory, vol. 41, no. 5, pp. 1379-1396, Sep. 1995.

Decoding of Block Turbo Codes

- Each component code of a BTC is decoded in two stages for iterative decoding
- At the first stage, the Chase algorithm is employed.
	- \checkmark Choose some least reliable positions of the received vector
	- \checkmark Generate test sequences from the hard-decision vector of the received vector
	- \checkmark Decode them by hard-decision decoding
	- \checkmark Make a list of candidate codewords
	- \checkmark An decision codeword is determined from the list.
- At the second stage, the extrinsic information is computed for iterative decoding.
- **18/35** Encoding-based decoding algorithms such OSD may be employed at the first stage

• Iterative decoding

- \checkmark Suboptimum
- \checkmark Two-stage decoding for each row or column vector of the received array
- \checkmark Decode columns first and then rows in turn
- \checkmark Extrinsic information is fed back
- First stage: Use the Chase algorithm

- (1) Obtain the hard-decision vector Y from the input vector \mathbf{R} .
- (2) Find the p least reliable bit (LRB) positions in $\bf R$.
- (3) Construct 2^p test patterns $\mathbf{T}^j = (t_1^j, t_2^j, ..., t_n^j), j = 1, ..., 2^p$ where t_i^j is set to 0 or 1 at the p LRB positions and zero at the remaining positions. $t^{\,\prime}_l$ is set to 0 or 1 at the $\,p$
- (4) Construct 2^p test sequences (TSs) $\mathbf{Z}^j = \mathbf{Y} \oplus \mathbf{T}^j$ where \oplus is the component-wise modulo-2 sum operator. *p*
- (5) Apply an algebraic HDD to \mathbf{Z}^j
- (6) Compute $\left\|\mathbf{R}-\varphi\left(\mathbf{C}^{j}\right)\right\|^{2}, \ \ \forall j \in \left[1, 2^{p}\right].$ $\bigg)$
- 2(7) Select a decision codeword $\mathbf{D} = (d_1, d_2, ..., d_n)$ as

$$
\mathbf{D} = \argmin_{\mathbf{C}^j} \left\| \mathbf{R} - \varphi\left(\mathbf{C}^j\right) \right\|^2.
$$

(1) Compute the extrinsic information for the τ_l th bit of the decision codeword as

$$
w_{l} = \begin{cases} \frac{1}{4} \left(\left\| \mathbf{R} - \boldsymbol{\varphi} \left(\mathbf{B}^{l} \right) \right\|^{2} - \left\| \mathbf{R} - \boldsymbol{\varphi} \left(\mathbf{D} \right) \right\|^{2} \right) \times \boldsymbol{\varphi}(d_{l}) - r_{l}, & \text{if } \mathbf{B}^{l} \text{ exists} \\ \boldsymbol{\beta} \times \boldsymbol{\varphi}(d_{l}), & \text{otherwise.} \end{cases}
$$
Reliability factor

where
$$
\mathbf{B}' = (b_1, b_2, ..., b_n) = \underset{\mathbf{C}^j, c_i^j \neq d_i}{\arg \min} \|\mathbf{R} - \varphi(\mathbf{C}^j)\|^2
$$
 is a competing codeword.

(2) Input to the next-iteration decoder is updated as follows:

$\mathbf{R}_{\text{next}}(t) = \mathbf{R} + \alpha(t) \mathbf{W}(t-1)$		
$t = 1, 2, \dots, t_{\text{max}}$	$\mathbf{W}(t-1) = (w_1, w_2, \dots, w_n)$	
Current iteration	Weighting number	Extrinsic information vector from the previous decoder

- Selection of weighting and reliability factors
	- \checkmark The optimal weighting factor α and reliability factor β are obtained experimentally through trial and error.
	- \checkmark Experimentally, BTCs show good error performance when

 $\alpha(t) = [0.0, 0.2, 0.3, 0.5, 0.7, 0.9, 1.0]$

 $\beta(t) = [0.2, 0.4, 0.6, 0.8, 1.0, 1.0, 1.0]$

- Issues for the conventional decoding algorithm
	- \checkmark Decoding complexity
	- \checkmark Performance

- Limitations of the conventional decoding algorithm
	- \checkmark Employs the Chase algorithm with p fixed, regardless of the SNR or the number of iterations.
	- \checkmark The number of hard-decision decoding for each row or column vector is fixed, regardless of the reliability of a given decoder input vector.

- Modification of the first stage
	- \checkmark Use test pattern elimination:
		- Fragiocomo et al. (1999), Hirst et al. (2001), Chi et al. (2004), Chen et al. (2009), etc.
	- \checkmark Replace the Chase algorithm by OSD Fossorier et al. (2002), Fang et al. (2000), etc.
- Modified extraction of the extrinsic information at the second stage
	- \checkmark Adaptive scaling:
		- Picart and Pyndiah (1999), Martin and Taylor (2000), etc
	- \checkmark Amplitude clipping:

Zhang and Le-Ngoc (2001)

- Proposed algorithm I
	- \checkmark Check whether the employed HDD outputs a codeword for a given decoder input vector.
	- \checkmark Apply one of two estimation rules.
- Based on these two rules, the number of TSs can be made monotonically decreasing with iterations.
- Advantages
	- \checkmark can significantly reduce the decoding complexity
	- \checkmark with a negligible performance loss,

compared with the conventional decoding algorithm.

^[9] J. Son, K. Cheun, and K. Yang, "Low-Complexity Decoding of Block Turbo Codes Based on the Chase Algorithm," IEEE Communications Letters, vol. 21, no. 4, pp. 706-709, Apr. 2017.

outputs a codeword $\mathbf{C}_{\mathbf{Y}}$ with • Case 1: For a given decoder input vector Y , the employed HDD

 $d_H(Y, C_Y) \leq 1.$

- $\mathbf{C}_{\mathbf{Y}}$ is equal to the transmitted codeword. \checkmark Observation: With high probability,
- \checkmark Estimation Rule 1:
	- (1) Estimate $\mathbf{C}_{\mathbf{Y}}$ as the decision codeword \mathbf{D} without applying the Chase algorithm; and (2) Compute the extrinsic information as

$$
w_l = \gamma \times \varphi(d_l) \qquad l = 1, 2, ..., n
$$

where γ is a reliability factor larger than β .

- the employed HDD outputs a codeword $\mathbf{C}_{\mathbf{Y}}$ with $d_H(\mathbf{Y},\mathbf{C}_{\mathbf{Y}})$ > 1 \bullet Case 2: For a given decoder input vector \mathbf{Y}_r or it does not give any codeword due to a decoding failure.
	- \checkmark Estimation Rule 2:
		- (1) Apply the Chase algorithm with parameter *p* to get a decision codeword; and (2) Compute the extrinsic information by the conventional method
	- \checkmark The key to Estimation Rule 2 is to determine how to evolve \bar{p} with half-iteration.

Proposed Algorithm I

• The partial average distance between the hard-decision vectors and the decision codewords obtained by Rule 2 for the received array at the *i*th half-iteration is defined by

$$
\hat{d}_{i} = \frac{1}{m} \sum_{j=1}^{m} d_{H} \left(\mathbf{Y}_{j}, \mathbf{C}_{j} \right).
$$

 \bullet The parameter p may be evolved as

$$
p_{i+1} = \left\lfloor a\hat{d}_i \right\rfloor + b \leq p_i \leq p.
$$

Proposed Algorithm I: Numerical Results

• Average portion of row vectors Y having $d_H(Y, C_Y) \leq 1$

29/35

Proposed Algorithm I: Numerical Results

 \bullet Probability that $\mathbf{C}_{\mathbf{Y}}$ is equal to the corresponding transmitted codeword

Proposed Algorithm I: Numerical Results

 \bullet Computational complexity of an eBCH(64, 51, 6)² code

 As the SNR increases, the average number of trials of the employed HDD in the proposed algorithm can be significantly reduced.

● BER performance of an eBCH(64, 51, 6)² code

 The proposed algorithm has only a negligible performance loss, compared with the conventional algorithm.

- Proposed algorithm II
	- \checkmark imposes two algebraic conditions on the Chase algorithm to avoid a number of unnecessary HDD operations;
	- \checkmark simply computes the extrinsic information for the decision codeword.
- Advantages
	- \checkmark has much lower computational decoding complexity;
	- \checkmark has a little better performance than the conventional decoding algorithm.

^[10] J. Son, J. J. Kong, and K. Yang, "Efficient Decoding of Block Turbo Codes," submitted 2017.

Proposed Algorithm II: Numerical Results

• Portion of distinct codewords among the algebraically decoded TSs

- BTCs under iterative decoding show excellent performance with reasonable complexity.
- We proposed two decoding algorithms for BTCs based on the Chase algorithm.
- They can significantly reduce the decoding complexity with a negligible performance loss or a slightly improved performance, compared with the conventional algorithm for BTCs.
- Low-complexity decoding algorithms for BTCs based on OSD may be further studied.