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Product Codes

 Product codes were proposed by Elias in 1954 [1].

 Advantages 

 Low-complexity decoding

     1 1 1 2 2 2 1 2 1 2 1 2, ,, , ,,n k d n k d n n k k d d 
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 Robust to burst errors

assuming that codes of length    have decoding complexity

[1] P. Elias, “Error-free coding,” IRE Trans. on Information Theory, vol. IT-4. pp. 29-37, Sept. 1954. 

 Efficient construction for long codes

2( )O ll
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Product Codes:  Construction and Encoding

k 1n 1

 Column encoding by an                    code.

 The constructed code is an                        linear code.

1 1 1, ,n k d  

2 2 2, ,n k d  
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 Row encoding by an                  code.

 Encoding
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 Parameters
- length:
- inf. Length:
- min. distance:
- rate:
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Product Codes:  Decoding

 Column decoding by an                     code.

 Hard-decision decoding is conventionally performed only once

1 1 1, ,n k d  

2 2 2, ,n k d   Row decoding by an                  code.

 Decoding



6/35

Product Codes:  Component Codes

 Component codes
 Typically, high rate codes are employed.
 Hamming codes or extended Hamming codes
 BCH codes or extended BCH codes

…

 Usually, these codes are algebraically decoded.
 Berlekamp-Massey algorithm 
 Euclidean decoding algorithm

…

 Under algebraic decoding (hard-decision decoding), iterative decoding 
do not improve the performance of a product code.
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Hard-Decision  vs.  Soft-Decision Decoding

 Assume that binary phase-shift keying (BPSK) is employed over 
the additive white Gaussian noise (AWGN) channel.

 The ouput of a matched filter at the receiver is 

 Binary-input AWGN (BI-AWGN) channel

r
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Hard-Decision  vs.  Soft-Decision Decoding

 Hard-decision:                                  
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Binary symmetric channel (BSC)

LLR (log-likelihood ratio) 

 Soft-decision                                  

 The asymptotic coding gain of soft-decision decoding 
over hard-decision decoding is 3 dB.



9/35

Concatenated Codes:  A Generalization

 Concatenated codes 
 Proposed by Forney in 1965 [2]
 A generalization of product codes by an interleaver

[2] G. D. Forney, Concatenated Codes, Ph.D. Dissertation, MIT 1965. 

 As an inner code, soft-decision decodable codes are strongly 
recommended for better performance.

 Best combination for the AWGN Channel before the turbo era: 
Reed-Solomon   +   Convolutional codes 

(Viterbi algorithm)
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Concatenated Codes:  Decoding

 Iterative decoding (turbo principle)
 Inner and outer codes can be iteratively decoded, if they are    

supported by soft-input soft-output decoders.
 Then the overall performance can be significantly decoded.

 Inner and outer codes are decoded only once.
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Block Turbo Codes

 Turbo codes
 Invented by Berrou, Glavieux, and Thitmajshima in 1993 [3]
 Parallel concatenated codes 
 Convolutional codes as component codes
 Soft-input soft-output (SISO) decoder for convolutional codes
 Iterative decoding
 capacity-approaching performance 

 Block turbo codes (BTCs)
 Introduced by Pyndiah [4],[5]
 Product codes: serially concatenated codes
 Block codes as component codes
 Large minimum Hamming distance
 SISO decoder for block codes:  a bottleneck for decoding of BTCs.
 Iterative decoding

[3] C. Berrou, A. Glavieux, and P. Thitmajshima, “Near Shannon limit error-correcting coding and decoding: Turbo-codes (1)," 
ICC 1993.

[4] R. Pyndiah, A. Glavieux, A. Picart, and S. Jacq, “Near optimum decoding of product codes,” 
in Proc. IEEE GLOBECOM 1994, vol. 1, pp. 339-343, Nov.-Dec. 1994.

[5] R. Pyndiah, “Near-optimum decoding of product codes: block turbo codes," IEEE TCOM, vol. 46, no. 8, Aug. 1998.
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SISO Decoding for Block Codes

 Soft-input soft-output (SISO) decoding

 For convolutional codes, the BCJR Algorithm supports SISO decoding.

x y

 in
eL  out

eL

 For graph-based codes, SISO decoding can be implemented by 
message-passing algorithms such as the sum-product algorithms for 
low-density parity check (LDPC) codes.

 In this talk, we consider block codes which are algebraically constructed.
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SISO Decoding for Block Codes

 SISO decoding for block codes can be implemented in two stages:
 Soft-decision decoding
 Extraction of the extrinsic information

 Soft-decision decoding for block codes
 Maximum-likelihood (ML) decoding
 Trellis-based decoding
 List-based decoding
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Maximum-Likelihood (ML) Decoding

 ML decoding is equivalent to minimum distance decoding over the 
AWGN channel:

   2 2
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  information length of a row or a column code
  received signal vector

 optimum decision codeword

  th codeword of a code 

  mapping    0,1 1, 1  function  from  to 

impractical for 
long codes!

 ML decoding is optimal in the sense that the block error rate is 
minimized.

 However, ML decoding is not feasible for high-rate codes.
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Trellis-Based Decoding for Block Codes

 Trellis representation of a block code

 The Viterbi algorithm or BCJR algorithm is employed.

 Disadvantages 
 The corresponding trellis is not time-invariant, but time-varying.
 The complexity of trellis representation is very high.

Number of states

 Trellis-based decoding has high complexity.

1 1 0 0 1 0
0 1 1 0 0 1
1 0 1 1 0 0

H
 
   
 
 

min (2 ,2 )k n k  

[6] J. K. Wolf, “Efficient maximum likelihood decoding of linear block codes using a trellis,” IEEE Trans. Inform. Theory, 
vol. 24, no. 1, Jan. 1978.
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List-Based Decoding: Chase Decoding

 Chase Decoding [7]
 Choose some least reliable positions of the received vector
 Generate test sequences from the hard-decision vector of the received vector
 Decode them by hard-decision decoding
 Make a list of candidate codewords 
 An decision codeword is determined from the list.

[7] D. Chase, “A class of algorithms for decoding block codes with channel measurement information," 
IEEE Trans. Inform. Theory, vol. IT-18, no. 1, Aug. 1972.

1r 2r pr 1pr  nr


1y 2y py 1py  ny
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List-Based Decoding: OSD

 Ordered Statistics Decoding (OSD)
 Choose some largest reliable positions of the received vector
 Generate test information vectors
 Encode them into codewords
 Make a list of candidate codewords 
 An decision codeword is determined from the list.

[8] M. P. C. Fossorier and S. Lin, “Soft-decision decoding of linear block codes based on ordered statistics,”
IEEE Trans. Inform. Theory, vol. 41, no. 5, pp. 1379-1396, Sep. 1995.

1r 2r kr 1kr  nr


1y 2y ky 1ky  ny



1 0 0
0 1 0

0 0 1







1c
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0 0 0

3c
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Decoding of Block Turbo Codes

 Each component code of a BTC is decoded in two stages for iterative 
decoding

 At the first stage, the Chase algorithm is employed.
 Choose some least reliable positions of the received vector
 Generate test sequences from the hard-decision vector of 

the received vector
 Decode them by hard-decision decoding
 Make a list of candidate codewords
 An decision codeword is determined from the list.

 At the second stage, the extrinsic information is computed for iterative 
decoding.

 Encoding-based decoding algorithms such OSD may be employed at the 
first stage
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Decoding of Block Turbo Codes

bit-by-bit
hard decision

 Iterative decoding
 Suboptimum 
 Two-stage decoding for each row or column vector of the received array
 Decode columns first and then rows in turn
 Extrinsic information is fed back

 First stage: Use the Chase algorithm



20/35

Decoding of BTCs:  First Stage 

(1)  Obtain the hard-decision vector      from  the input vector     .RY

(2)  Find the  least reliable bit (LRB) positions in     .R

(3)  Construct      test patterns 
where       is set to 0 or 1 at the LRB positions
and zero at the remaining positions.

 1 2, ,..., , 1,..., 2j j j j p
nt t t j T

j
lt

(4)  Construct       test sequences (TSs)
where       is the component-wise modulo-2 sum 
operator.

j j Z Y T


2p

2p

p

p

(6)  Compute                                   .  2
,   1 2,  pj j     R C

  2
arg min .

j

j 
C

D R C

(5)  Apply an algebraic HDD to     .jZ

(7)  Select a decision codeword as 1 2, , ..., nd d dD
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Extrinsic information vector 
from the previous decoder
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Decoding of BTCs:  Second Stage

(1) Compute the extrinsic information for the th bit of the decision 
codeword as

l

where                                                      is a competing codeword.

(2)  Input to the next-iteration decoder is updated as follows:
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

   0.0,  0.2,  0.3,  0.5,  0.7,  0.9,  1.0t 

   0.2,  0.4,  0.6,  0.8,  1.0,  1.0,  1.0t 

Decoding of BTCs:  Choice of      and 

 Selection of weighting and reliability factors

 The optimal weighting factor     and reliability factor     are 
obtained experimentally through trial and error. 

 Experimentally, BTCs show good error performance when

 
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Decoding of BTCs:  Issues

 Issues for the conventional decoding algorithm
 Decoding complexity
 Performance

 Limitations of the conventional decoding algorithm

 Employs the Chase  algorithm with p fixed, 
regardless of the SNR or the number of iterations.

 The number of hard-decision decoding for each row or 
column vector is fixed, regardless of the reliability of 
a given decoder  input vector.
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Decoding of BTCs:  Issues

 Modification of the first stage
 Use test pattern elimination: 

Fragiocomo et al. (1999), Hirst et al. (2001), 
Chi et al. (2004), Chen et al. (2009), etc.

 Replace the Chase algorithm  by OSD
Fossorier et al. (2002), Fang et al. (2000), etc. 

 Modified extraction of the extrinsic information at the second stage
 Adaptive scaling: 

Picart and Pyndiah (1999), Martin and Taylor (2000), etc
 Amplitude clipping:

Zhang and Le-Ngoc (2001) 
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Proposed Algorithm I

 Proposed algorithm I
 Check whether the employed HDD outputs a codeword

for a given decoder input vector.
 Apply one of two estimation rules. 

 Based on these two rules, the number of TSs can be made  
monotonically decreasing with iterations.

 Advantages
 can significantly reduce the decoding complexity 
 with a negligible performance loss,
compared with the conventional decoding algorithm.

[9] J. Son, K. Cheun, and K. Yang, "Low-Complexity Decoding of Block Turbo Codes Based on the Chase Algorithm," 
IEEE Communications Letters, vol. 21, no. 4, pp. 706-709, Apr. 2017. 
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Proposed Algorithm I

 , 1.Hd YY C
YC

 Case 1:  For a given decoder input vector     ,  the employed HDD  
outputs a codeword with                      

Y

YC
 Observation:  With high probability, 

is equal to the transmitted codeword.

 Estimation Rule 1:
(1) Estimate        as the decision codeword       

without  applying the Chase algorithm; and 
(2) Compute the extrinsic information as  

where      is a reliability factor larger than     .

1, 2,...,l n

DYC

 l lw d  


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Proposed Algorithm I

 , 1Hd YY CYC
 Case 2:  For a given decoder input vector     ,  

the employed HDD  outputs a codeword       with
or it does not give any codeword due to a decoding failure.

Y

 Estimation Rule 2:
(1) Apply the Chase algorithm with parameter  

to get a decision codeword; and 
(2) Compute the extrinsic information 

by the conventional method   

p

p

 The key to Estimation Rule 2 is to determine how to evolve      
with half-iteration.
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Proposed Algorithm I

 
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2mC

nC

 The partial average distance between the hard-decision vectors and the 
decision codewords obtained by Rule 2 for the received array at the ith 
half-iteration is defined by  

p The parameter      may be evolved as  
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Proposed Algorithm I:  Numerical Results
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Proposed Algorithm I:  Numerical Results

2 2.2 2.4 2.6 2.8 3
0.85

0.9

0.95

1

Eb/N0 [dB]

Pr
ob

ab
ili

ty

 

 

eBCH(64,51,6)2

eBCH(64,45,8)2

1st half-iteration
3rd half-iteration
5th half-iteration
7th half-iteration
9th half-iteration

YC Probability that       is equal to the corresponding transmitted codeword  



31/35

0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Eb/N0 [dB]

N
or

m
al

iz
ed

 n
um

be
r o

f t
ria

ls

 

 

Conventional
Syndrome-Based
Proposed, a=0.95, b=1
Proposed, a=0.97, b=1
Proposed, a=0.99, b=1

Proposed Algorithm I:  Numerical Results

max # iterations: 4

 Computational complexity of an eBCH(64, 51, 6)2 code

 As the SNR increases, the average number of trials of the employed 
HDD in the proposed algorithm can be significantly reduced.




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Proposed Algorithm I:  Numerical Results
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 BER performance of an eBCH(64, 51, 6)2 code

 The proposed algorithm has only a negligible performance loss, 
compared with the conventional algorithm.
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Proposed Algorithm II

 Proposed algorithm II 
 imposes two algebraic conditions on the Chase algorithm 

to avoid a number of unnecessary HDD operations; 
 simply computes the extrinsic information for 

the decision codeword.

 Advantages
 has much lower computational decoding complexity; 
 has a little better performance

than the conventional decoding algorithm.

[10] J. Son, J. J. Kong, and K. Yang, “Efficient Decoding of Block Turbo Codes," submitted 2017. 
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Proposed Algorithm II:  Numerical Results

 Portion of distinct codewords among the algebraically decoded TSs

- eBCH(64, 51, 6)2

- 4 iterations
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Conclusions

 BTCs under iterative decoding show excellent performance with 
reasonable complexity.

 We proposed two decoding algorithms for BTCs based on the Chase 
algorithm.  

 They can significantly reduce the decoding complexity with a negligible 
performance loss or a slightly improved performance, compared with 
the conventional algorithm for BTCs.

 Low-complexity decoding algorithms for BTCs based on OSD may be 
further studied.


