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Product Codes

 Product codes were proposed by Elias in 1954 [1].

 Advantages 

 Low-complexity decoding

     1 1 1 2 2 2 1 2 1 2 1 2, ,, , ,,n k d n k d n n k k d d 
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 Robust to burst errors

assuming that codes of length    have decoding complexity

[1] P. Elias, “Error-free coding,” IRE Trans. on Information Theory, vol. IT-4. pp. 29-37, Sept. 1954. 

 Efficient construction for long codes
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Product Codes:  Construction and Encoding

k 1n 1

 Column encoding by an                    code.

 The constructed code is an                        linear code.
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 Parameters
- length:
- inf. Length:
- min. distance:
- rate:
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Product Codes:  Decoding

 Column decoding by an                     code.

 Hard-decision decoding is conventionally performed only once

1 1 1, ,n k d  

2 2 2, ,n k d   Row decoding by an                  code.

 Decoding
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Product Codes:  Component Codes

 Component codes
 Typically, high rate codes are employed.
 Hamming codes or extended Hamming codes
 BCH codes or extended BCH codes

…

 Usually, these codes are algebraically decoded.
 Berlekamp-Massey algorithm 
 Euclidean decoding algorithm

…

 Under algebraic decoding (hard-decision decoding), iterative decoding 
do not improve the performance of a product code.
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Hard-Decision  vs.  Soft-Decision Decoding

 Assume that binary phase-shift keying (BPSK) is employed over 
the additive white Gaussian noise (AWGN) channel.

 The ouput of a matched filter at the receiver is 

 Binary-input AWGN (BI-AWGN) channel
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Hard-Decision  vs.  Soft-Decision Decoding

 Hard-decision:                                  
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Binary symmetric channel (BSC)

LLR (log-likelihood ratio) 

 Soft-decision                                  

 The asymptotic coding gain of soft-decision decoding 
over hard-decision decoding is 3 dB.
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Concatenated Codes:  A Generalization

 Concatenated codes 
 Proposed by Forney in 1965 [2]
 A generalization of product codes by an interleaver

[2] G. D. Forney, Concatenated Codes, Ph.D. Dissertation, MIT 1965. 

 As an inner code, soft-decision decodable codes are strongly 
recommended for better performance.

 Best combination for the AWGN Channel before the turbo era: 
Reed-Solomon   +   Convolutional codes 

(Viterbi algorithm)



10/35

Concatenated Codes:  Decoding

 Iterative decoding (turbo principle)
 Inner and outer codes can be iteratively decoded, if they are    

supported by soft-input soft-output decoders.
 Then the overall performance can be significantly decoded.

 Inner and outer codes are decoded only once.
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Block Turbo Codes

 Turbo codes
 Invented by Berrou, Glavieux, and Thitmajshima in 1993 [3]
 Parallel concatenated codes 
 Convolutional codes as component codes
 Soft-input soft-output (SISO) decoder for convolutional codes
 Iterative decoding
 capacity-approaching performance 

 Block turbo codes (BTCs)
 Introduced by Pyndiah [4],[5]
 Product codes: serially concatenated codes
 Block codes as component codes
 Large minimum Hamming distance
 SISO decoder for block codes:  a bottleneck for decoding of BTCs.
 Iterative decoding

[3] C. Berrou, A. Glavieux, and P. Thitmajshima, “Near Shannon limit error-correcting coding and decoding: Turbo-codes (1)," 
ICC 1993.

[4] R. Pyndiah, A. Glavieux, A. Picart, and S. Jacq, “Near optimum decoding of product codes,” 
in Proc. IEEE GLOBECOM 1994, vol. 1, pp. 339-343, Nov.-Dec. 1994.

[5] R. Pyndiah, “Near-optimum decoding of product codes: block turbo codes," IEEE TCOM, vol. 46, no. 8, Aug. 1998.
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SISO Decoding for Block Codes

 Soft-input soft-output (SISO) decoding

 For convolutional codes, the BCJR Algorithm supports SISO decoding.

x y

 in
eL  out

eL

 For graph-based codes, SISO decoding can be implemented by 
message-passing algorithms such as the sum-product algorithms for 
low-density parity check (LDPC) codes.

 In this talk, we consider block codes which are algebraically constructed.
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SISO Decoding for Block Codes

 SISO decoding for block codes can be implemented in two stages:
 Soft-decision decoding
 Extraction of the extrinsic information

 Soft-decision decoding for block codes
 Maximum-likelihood (ML) decoding
 Trellis-based decoding
 List-based decoding
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Maximum-Likelihood (ML) Decoding

 ML decoding is equivalent to minimum distance decoding over the 
AWGN channel:
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  received signal vector

 optimum decision codeword

  th codeword of a code 

  mapping    0,1 1, 1  function  from  to 

impractical for 
long codes!

 ML decoding is optimal in the sense that the block error rate is 
minimized.

 However, ML decoding is not feasible for high-rate codes.
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Trellis-Based Decoding for Block Codes

 Trellis representation of a block code

 The Viterbi algorithm or BCJR algorithm is employed.

 Disadvantages 
 The corresponding trellis is not time-invariant, but time-varying.
 The complexity of trellis representation is very high.

Number of states

 Trellis-based decoding has high complexity.

1 1 0 0 1 0
0 1 1 0 0 1
1 0 1 1 0 0

H
 
   
 
 

min (2 ,2 )k n k  

[6] J. K. Wolf, “Efficient maximum likelihood decoding of linear block codes using a trellis,” IEEE Trans. Inform. Theory, 
vol. 24, no. 1, Jan. 1978.
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List-Based Decoding: Chase Decoding

 Chase Decoding [7]
 Choose some least reliable positions of the received vector
 Generate test sequences from the hard-decision vector of the received vector
 Decode them by hard-decision decoding
 Make a list of candidate codewords 
 An decision codeword is determined from the list.

[7] D. Chase, “A class of algorithms for decoding block codes with channel measurement information," 
IEEE Trans. Inform. Theory, vol. IT-18, no. 1, Aug. 1972.
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List-Based Decoding: OSD

 Ordered Statistics Decoding (OSD)
 Choose some largest reliable positions of the received vector
 Generate test information vectors
 Encode them into codewords
 Make a list of candidate codewords 
 An decision codeword is determined from the list.

[8] M. P. C. Fossorier and S. Lin, “Soft-decision decoding of linear block codes based on ordered statistics,”
IEEE Trans. Inform. Theory, vol. 41, no. 5, pp. 1379-1396, Sep. 1995.
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Decoding of Block Turbo Codes

 Each component code of a BTC is decoded in two stages for iterative 
decoding

 At the first stage, the Chase algorithm is employed.
 Choose some least reliable positions of the received vector
 Generate test sequences from the hard-decision vector of 

the received vector
 Decode them by hard-decision decoding
 Make a list of candidate codewords
 An decision codeword is determined from the list.

 At the second stage, the extrinsic information is computed for iterative 
decoding.

 Encoding-based decoding algorithms such OSD may be employed at the 
first stage
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Decoding of Block Turbo Codes

bit-by-bit
hard decision

 Iterative decoding
 Suboptimum 
 Two-stage decoding for each row or column vector of the received array
 Decode columns first and then rows in turn
 Extrinsic information is fed back

 First stage: Use the Chase algorithm
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Decoding of BTCs:  First Stage 

(1)  Obtain the hard-decision vector      from  the input vector     .RY

(2)  Find the  least reliable bit (LRB) positions in     .R

(3)  Construct      test patterns 
where       is set to 0 or 1 at the LRB positions
and zero at the remaining positions.

 1 2, ,..., , 1,..., 2j j j j p
nt t t j T

j
lt

(4)  Construct       test sequences (TSs)
where       is the component-wise modulo-2 sum 
operator.

j j Z Y T


2p
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(6)  Compute                                   .  2
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(5)  Apply an algebraic HDD to     .jZ

(7)  Select a decision codeword as 1 2, , ..., nd d dD
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Decoding of BTCs:  Second Stage

(1) Compute the extrinsic information for the th bit of the decision 
codeword as

l

where                                                      is a competing codeword.

(2)  Input to the next-iteration decoder is updated as follows:
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   0.0,  0.2,  0.3,  0.5,  0.7,  0.9,  1.0t 

   0.2,  0.4,  0.6,  0.8,  1.0,  1.0,  1.0t 

Decoding of BTCs:  Choice of      and 

 Selection of weighting and reliability factors

 The optimal weighting factor     and reliability factor     are 
obtained experimentally through trial and error. 

 Experimentally, BTCs show good error performance when
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Decoding of BTCs:  Issues

 Issues for the conventional decoding algorithm
 Decoding complexity
 Performance

 Limitations of the conventional decoding algorithm

 Employs the Chase  algorithm with p fixed, 
regardless of the SNR or the number of iterations.

 The number of hard-decision decoding for each row or 
column vector is fixed, regardless of the reliability of 
a given decoder  input vector.
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Decoding of BTCs:  Issues

 Modification of the first stage
 Use test pattern elimination: 

Fragiocomo et al. (1999), Hirst et al. (2001), 
Chi et al. (2004), Chen et al. (2009), etc.

 Replace the Chase algorithm  by OSD
Fossorier et al. (2002), Fang et al. (2000), etc. 

 Modified extraction of the extrinsic information at the second stage
 Adaptive scaling: 

Picart and Pyndiah (1999), Martin and Taylor (2000), etc
 Amplitude clipping:

Zhang and Le-Ngoc (2001) 
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Proposed Algorithm I

 Proposed algorithm I
 Check whether the employed HDD outputs a codeword

for a given decoder input vector.
 Apply one of two estimation rules. 

 Based on these two rules, the number of TSs can be made  
monotonically decreasing with iterations.

 Advantages
 can significantly reduce the decoding complexity 
 with a negligible performance loss,
compared with the conventional decoding algorithm.

[9] J. Son, K. Cheun, and K. Yang, "Low-Complexity Decoding of Block Turbo Codes Based on the Chase Algorithm," 
IEEE Communications Letters, vol. 21, no. 4, pp. 706-709, Apr. 2017. 
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Proposed Algorithm I

 , 1.Hd YY C
YC

 Case 1:  For a given decoder input vector     ,  the employed HDD  
outputs a codeword with                      

Y

YC
 Observation:  With high probability, 

is equal to the transmitted codeword.

 Estimation Rule 1:
(1) Estimate        as the decision codeword       

without  applying the Chase algorithm; and 
(2) Compute the extrinsic information as  

where      is a reliability factor larger than     .

1, 2,...,l n

DYC

 l lw d  
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Proposed Algorithm I

 , 1Hd YY CYC
 Case 2:  For a given decoder input vector     ,  

the employed HDD  outputs a codeword       with
or it does not give any codeword due to a decoding failure.

Y

 Estimation Rule 2:
(1) Apply the Chase algorithm with parameter  

to get a decision codeword; and 
(2) Compute the extrinsic information 

by the conventional method   

p

p

 The key to Estimation Rule 2 is to determine how to evolve      
with half-iteration.
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Proposed Algorithm I
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 The partial average distance between the hard-decision vectors and the 
decision codewords obtained by Rule 2 for the received array at the ith 
half-iteration is defined by  

p The parameter      may be evolved as  
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Proposed Algorithm I:  Numerical Results
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Proposed Algorithm I:  Numerical Results
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Proposed Algorithm I:  Numerical Results

max # iterations: 4

 Computational complexity of an eBCH(64, 51, 6)2 code

 As the SNR increases, the average number of trials of the employed 
HDD in the proposed algorithm can be significantly reduced.
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Proposed Algorithm I:  Numerical Results
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 BER performance of an eBCH(64, 51, 6)2 code

 The proposed algorithm has only a negligible performance loss, 
compared with the conventional algorithm.
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Proposed Algorithm II

 Proposed algorithm II 
 imposes two algebraic conditions on the Chase algorithm 

to avoid a number of unnecessary HDD operations; 
 simply computes the extrinsic information for 

the decision codeword.

 Advantages
 has much lower computational decoding complexity; 
 has a little better performance

than the conventional decoding algorithm.

[10] J. Son, J. J. Kong, and K. Yang, “Efficient Decoding of Block Turbo Codes," submitted 2017. 
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Proposed Algorithm II:  Numerical Results

 Portion of distinct codewords among the algebraically decoded TSs

- eBCH(64, 51, 6)2

- 4 iterations
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Conclusions

 BTCs under iterative decoding show excellent performance with 
reasonable complexity.

 We proposed two decoding algorithms for BTCs based on the Chase 
algorithm.  

 They can significantly reduce the decoding complexity with a negligible 
performance loss or a slightly improved performance, compared with 
the conventional algorithm for BTCs.

 Low-complexity decoding algorithms for BTCs based on OSD may be 
further studied.


